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Abstract: This research proposes an algorithm to preprocess photoplethysmography (PPG) and
electrocardiogram (ECG) signals and apply the processed signals to the context aggregation network-
based deep learning to achieve higher accuracy of continuous systolic and diastolic blood pressure
monitoring than other reported algorithms. The preprocessing method consists of the following
steps: (1) acquiring the PPG and ECG signals for a two second window at a sampling rate of 125 Hz;
(2) separating the signals into an array of 250 data points corresponding to a 2 s data window;
(3) randomizing the amplitude of the PPG and ECG signals by multiplying the 2 s frames by a
random amplitude constant to ensure that the neural network can only learn from the frequency
information accommodating the signal fluctuation due to instrument attachment and installation;
(4) Fourier transforming the windowed PPG and ECG signals obtaining both amplitude and phase
data; (5) normalizing both the amplitude and the phase of PPG and ECG signals using z-score
normalization; and (6) training the neural network using four input channels (the amplitude and
the phase of PPG and the amplitude and the phase of ECG), and arterial blood pressure signal
in time-domain as the label for supervised learning. As a result, the network can achieve a high
continuous blood pressure monitoring accuracy, with the systolic blood pressure root mean square
error of 7 mmHg and the diastolic root mean square error of 6 mmHg. These values are within the
error range reported in the literature. Note that other methods rely only on mathematical models for
the systolic and diastolic values, whereas the proposed method can predict the continuous signal
without degrading the measurement performance and relying on a mathematical model.

Keywords: electrocardiogram; photoplethysmography; blood pressure measurement; context
aggregation network; cuff-less blood pressure measurement

1. Introduction

Blood pressure is the heart’s force to pump blood through the body [1]. This medical
parameter is dependent on many physiological and mental factors, such as age, body
mass index (BMI), and even stress level [2]. Blood pressure is often measured for two
values: systolic and diastolic blood pressure; these numbers are essential parameters for
medical analysis. One of the most serious and common conditions that people encounter
is having significantly high blood pressure, also known as hypertension [3]. People with
hypertension usually have a high chance of encountering potentially fatal conditions such
as a stroke or heart attack [4]. In addition, abnormally high blood pressure cannot be cured;
nevertheless, it can be managed by a healthy lifestyle change, or by taking medication, and
can be prevented by frequently checking the blood pressure [5,6].
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In most cases, the systolic and diastolic blood pressure are obtained through a sphyg-
momanometer [7], which operates based on auscultatory or oscillometric techniques de-
pending on its type [8]. Even though the values can be altered as the cuff position changes,
the device’s measured outcomes are still considered highly accurate [9]. However, con-
tinuous blood pressure measurement is impractical, and the force applied by the sphyg-
momanometer’s cuff might be inconvenient for some patients, such as elders. Nowadays,
numerous healthcare watches, which can continuously monitor blood pressure, are de-
veloped; but the error can vary up to 10 mmHg for systolic and diastolic blood pressure
values [10–12].

Since the cuff method of blood pressure measurement cannot be performed, be
recorded and shown in real-time, several alternative methods of predicting blood pressure
values have been devised, involving mathematical equations to predict the systolic and
diastolic blood pressure value based on a relationship between ECG, PPG, and blood
pressure signals [12]. The main parameter for the estimation is either the pulse arrival time
(PAT) or pulse transit time (PTT) [13]. The measurements required for PAT and PTT are
shown in Figure 1. Nevertheless, other factors such as age, body mass index (BMI), gender,
or even posture during the measurement can affect the outcome [13–15].
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Figure 1. Pulse arrival time (PAT) and pulse transit time (PTT).

There have been several experiments involving cuff-less blood pressure monitor-
ing [16]. However, most of the research has been based on the pulse transit time (PTT)
method [17–20], and some utilized the pulse arrival time (PAT) method [21–23]. In addition,
few researchers [24,25] have attempted to predict blood pressure according to photoplethys-
mography morphology and another physiological partitioning, as shown in Table 1. For
example, Wang et al. [26] employed the PAT method with several pulse wave velocity–
blood pressure (PWV-BP) models, including the logarithmic, inverse, and inverse square
models. Table 1 summarizes the standard deviation of each reviewed method and their
optimal measuring ranges.
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Table 1. Accuracy of previous blood pressure estimations based on PTT, PAT, and other methods.

Systolic Blood
Pressure Errors

(Mean ± Standard
Deviation)

Diastolic Blood
Pressure Errors

(Mean ± Standard
Deviation)

Operating Range
Systolic Blood

Pressure

Operating Range
Diastolic Blood

Pressure

PTT-based Methods

Two-step algorithm developed by
machine learning [17] 0.07 ± 7.1 mmHg −0.08 ± 6.0 mmHg Reduced accuracy for

hypotension
Reduced accuracy for

hypotension
B.P. estimation based on PTT and

photoplethysmography intensity ratio
(PIR) [18]

−0.37 ± 5.21 mmHg −0.08 ± 4.06 mmHg Reduced accuracy for
hypertension

Reduced accuracy for
hypertension

B.P. estimation based on PTT and
intensity ratio of the first derivative

wave of PPG (1st-dPIR) [19]
2.88 ± 7.75 mmHg 2.80 ± 4.38 mmHg

Proceeding PTT-based method on the
repeatability test [20] 0.0 ± 5.3 mmHg 0.0 ± 2.9 mmHg 80–150 mmHg 60–120 mmHg

Proceeding PTT-based method using
regression coefficients [20] 1.4 ± 10.2 mmHg 2.1 ± 7.3 mmHg 80–150 mmHg 60–120 mmHg

PAT-based Methods

Estimating beat-by-beat blood pressure
using Chen’s method [21] −0.5 ± 5.3 mmHg 4.1 ± 3.4 mmHg

Standard pulse arrival time based
method calculations [22] 0 ± 3 mmHg 0 ± 3 mmHg

Using a linear correlation of systolic
blood pressure and a non-linear

correlation of diastolic blood pressure
and PAT [23]

0.2 ± 5.8 mmHg 0.4 ± 5.7 mmHg

Model-driven method:
Logarithmic [26] −0.512 ± 8.793 mmHg −0.148 ± 3.622 mmHg

Model-driven method: Inverse [26] −0.008 ± 8.203 mmHg −0.078 ± 3.448 mmHg
Model-driven method: Inverse

Square [26] −0.358 ± 8.084 mmHg −0.066 ± 3.574 mmHg

Other Methods

Estimating blood pressure based on
pulse morphology of PPG [24] 0.043 ± 5.001 mmHg 0.011 ± 3.689 mmHg

Blood pressure prediction based on
demographic and physiological

partitioning [25]

Mean absolute
error = 6.9 mmHg

Mean absolute
error = 5 mmHg 80–220 mmHg 45–120 mmHg

This research aims to pursue a process that can accurately and effectively provide
continuous systolic and diastolic blood pressure measurement through PPG and ECG
signals. We propose a pre-signal conditioning method to improve the accuracy of the
systolic and diastolic blood pressure measurement by combining the context aggregation
network architecture and the preprocessed PPG-ECG signals. It will be shown in the
results and discussion later that the proposed method can provide a higher accuracy blood
pressure estimation than the other methods reported in the literature for all the ranges of
the blood pressures, ranging from 90 mmHg to 180 mmHg, and 60 mmHg to 75 mmHg, for
systolic and diastolic blood pressures, respectively. Furthermore, to the best of the authors’
knowledge, the proposed method has never been reported before in the literature.

2. Materials and Methods

A context aggregation network (CAN) was employed to demonstrate the accuracy
and precision enhancement without adding more parameters to the Equation and reducing
noise the ECG and PPG signal. Note that the proposed preprocessing method is not
limited to the CAN architecture but is also applicable in other network structures. The
CAN network is one of the promising networks for time-series analysis [27] and images
analysis [28]. The network’s performance and behavior have been investigated, well
understood, and established [29]. Therefore, the CAN architecture was utilized in this
study over a newly designed network.
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According to the reviewed PAT and PTT, the blood pressure can be approximated on
time difference signals. Here, we have utilized the finding in PAT and PTT by randomizing
the amplitude of the PPG and EEG signals to ensure that the blood pressure prediction
does not rely on the signals’ amplitudes; a CAN with signal Fourier transform and ampli-
tude randomization have been developed and investigated. Here we employed one EEG
time-domain signal and one PPG time-domain signal like in the required signals for the
PAT method.

2.1. ECG and PPG Signal Database

The dataset “Cuff-Less Blood Pressure Estimation Data Set” employed in this study
was acquired from the UCI Machine Learning [30]. There were three preprocessed vital sig-
nals. The vital signals consist of fingertip photoplethysmography (PPG), electrocardiogram
(ECG), and invasive arterial blood pressure (ABP) in the time-domain at a sampling rate of
125 Hz. These signals were monitored and recorded from various hospitals from 2001 to
2008. Furthermore, they were obtained from healthy subjects and patients with pathological
conditions, including those with sleep apnea, aging, and movement disorders [30].

2.2. Training Dataset and Test Dataset

The total number of 203,000 data points was extracted from the data source and
further separated into a training dataset consisting of 175,000 data points and a test dataset
consisting of 28,000 data points. The training dataset was separated into 700 data frames at
250 data points for each frame, representing a 2 s data window for Fourier transformation,
explained later. The test dataset was also prepared using the same window size. The
training dataset covered all blood pressure levels from 40 to 180, as shown in Figure 2a,b
and the test dataset described in Figure 2c,d.
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Figure 2. Shows (a) average maximum, average minimum, average mean, and standard deviation of
each frame number for the training dataset; (b) histogram of blood pressure distribution covering in
the training dataset; (c) average maximum, average minimum, average mean, and standard deviation
of each frame number for the test dataset; and (d) histogram of blood pressure covering in the
test dataset.
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2.3. Signal Preconditioning

The signal preconditioning method consists of the following steps to prepare the
sequence of data for neural network training, as shown in Figure 3:

1. Acquire the PPG, ECG, and ABP signals for 203,000 data points.
2. Separate the three signals to 203,000 data points into 812 data frames at 250 data points

for each data frame. Each frame of the 250 data points represented a 2 s data window.
3. Randomize the amplitude of PPG and ECG signals by multiplying each 2 s window

with two randomized multiplication factors for each signal using a uniform random
number generator ranging from 0 to 1.

4. Fourier transform every randomized 2 s PPG and ECG signal window. The Fourier
transform gives out signals in terms of amplitude and phase, leading to 4 frequency
domain channels: the amplitude of ECG, the phase of ECG, the amplitude of PPG,
and the phase of PPG, respectively.

5. The four frequency domain channels are then z-score transformed to ensure that the
frequency data is appropriate for neural network training. These four channels are
then saved as an array of 4 pixels by 250 pixels with double precision.

6. The label of the input arrays is prepared by z-transforming the corresponding ABP
signal in the time domain. Note that the input to the CAN was the four channels
of frequency-domain data, and the label is the corresponding ABP signal in the
time domain.
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At the end of step (6), the input consisted of 812 sets of frequency-domain 4 × 250 pixel
images and the labels consisted of the corresponding 812 time-domain arterial blood
pressures of 1 × 250 pixels. The 812 sets were then separated into 3 datasets using random
selection, which comprised 665 training data, 35 validation data and 112 test data.

2.4. Context Aggregation Neural Network (CAN) Training

The Context Aggregation Neural Network (CAN) is one of the Convolutional Neural
Networks (CNN), a deep learning algorithm that works based on a mathematical operation
called convolution. The CAN network consists of only one stage that performs both
classification and forecasting processes concurrently. Generally, this network is used for
image processing, such as noise reduction [31], and learnable weights and biases can be
defined to differentiate the input image.

However, even though it can provide excellent image classification performance, it
requires much data and time to obtain high output accuracy [32]. Therefore, this study
applied the CAN with the network architecture in Figure 4 to train the described training
dataset and test the regression accuracy using the test set.
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Figure 4. Context Aggregation Network (CAN) architecture with 4 × 250 data inputs for both
magnitude and phase of ECG and PPG (4 × 250 pixels) in the frequency domain and 250 data outputs
of blood pressure (1 × 250 pixels) in the time domain.

The frequency-domain for both magnitude and phase of ECG and PPG signals are
converted to a 4 × 250 pixels image and used as training input, while the frequency-domain
blood pressure signal is reconstructed as a 1 × 250 pixel image and used as a training
label. According to the pulse arrival time (PAT), the calculated systolic and diastolic blood
pressure does not rely on ECG and PPG data amplitude. Therefore, the prepared input
signals are multiplied with a random number for each of the 250 data points. Numerous
sets of input and output images are used to train the context aggregation network (CAN);
complete details of the implemented networks are shown in Table 2.
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Table 2. Details of the implemented context aggregation network.

Layer Activations Learnable Variable Descriptions

Image input 4 × 250 × 1 – 4 × 500 × 1 images

Convolutional 4 × 250 × 32 Weights 2 × 2 × 1 × 32,
Bias 1 × 1 × 32 1 padding

Batch normalization Offset 1 × 1 × 32,
Scale 1 × 1 × 32 –

Adaptive normalization – –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 32 × 32,
Bias 1 × 1 × 32

2 padding, 1 Stride,
2 dilation

Batch normalization Offset 1 × 1 × 32,
Scale 1 × 1 × 32 –

Adaptive normalization – –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 32 × 32,
Bias 1 × 1 × 32

4 padding, 1 Stride,
4 dilation

Batch normalization Offset 1 × 1 × 32,
Scale 1 × 1 × 32 –

Adaptive normalization – –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 32 × 32,
Bias 1 × 1 × 32

8 padding, 1 Stride,
8 dilation

Batch normalization Offset 1 × 1 × 32,
Scale 1 × 1 × 32 –

Adaptive normalization – –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 32 × 32,
Bias 1 × 1 × 32

16 padding, 1 Stride,
16 dilation

Batch normalization Offset 1 × 1 × 32,
Scale 1 × 1 × 32 –

Adaptive normalization 4 × 250 × 32 – –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 32 × 32,
Bias 1 × 1 × 32

32 padding, 1 Stride,
32 dilation

Batch normalization Offset 1 × 1 × 32,
Scale 1 × 1 × 32 –

Adaptive normalization – –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 32 × 32,
Bias 1 × 1 × 32

64 padding, 1 Stride,
64 dilation

Batch normalization Offset 1 × 1 × 32,
Scale 1 × 1 × 32 –

Adaptive normalization – –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 32 × 32,
Bias 1 × 1 × 32

128 padding,
1 Stride, 128 dilation
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Table 2. Cont.

Layer Activations Learnable Variable Descriptions

Batch normalization Offset 1 × 1 × 32,
Scale 1 × 1 × 32 –

Adaptive normalization – –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 32 × 32,
Bias 1 × 1 × 32 1 padding, 1 Stride

Batch normalization Offset 1 × 1 × 32,
Scale 1 × 1 × 32 –

Adaptive normalization – –

Leaky ReLU 4 × 250 × 32 – Scale 0.2

Convolutional 4 × 250 × 3 Weights 3 × 3 × 32 × 32,
Bias 1 × 1 × 32 0 padding, 1 Stride

Regression output 1 × 1 × 250 – Mean square error

The CAN network can assign learnable weights and biases by the adaptive normaliza-
tion layer, while the Batch normalizer is used to overfit the neural network by using the
mean and standard deviation of data. In this case, the implemented network consists of
ten layers. For the first to eighth layer, the layer consists of padding functions and dilation
filters with sizes increasing exponentially to 128 at the eighth layer; the output size of each
layer will be identical, which is 4 × 250 × 32 pixels. The ninth layer consists of one padding
function and stride, and the output from this layer is the same as the upper layer and will
be applied to the regression layer. The ninth layer is the last convolutional layer used to
transform the output size to be 4 × 250 × 3 pixels for entering the regression layer. Finally,
the tenth layer is a regression layer which consists of a 3 × 3 filter that transforms the
output size to be 1 × 250 pixels, which will be the predicted blood pressure data for 2 s
(sampling frequency of 125 Hz). This context aggregation neural network (CAN) is trained
with a 0.0001 learning rate for 7000 epochs of training iteration using MATLAB2021c with
graphic processing unit (GPU) NVIDIA GeForce GTX 1070, using the training process
described in Figure 3.

The hyperparameters for the training are as summarized in Table 3. The network was
designed to cope with the overfitting issue by adding multiple stages of batch normalization
layers, as shown in Table 2. It will be shown in the next section that the slight overfitting of
4.5 mmHg is well within the RMSE of root mean square errors (RMSE). Therefore, further
network architecture modification is unnecessary since the predicted response is already
within the error limit.

Table 3. Details of the implemented context aggregation network.

Hyperparameter Parameter Value

Initial Learn Rate 1 × 10−4

Gradient Decay Factor 0.9000

Squared Gradient Decay Factor 0.9990

Epsilon (ε) 1 × 10−8

Learn Rate Schedule piecewise

Learn Rate Drop Factor 0.0100

Learn Rate Drop Period 125,000

L2 Regularization 1 × 10−4
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Table 3. Cont.

Hyperparameter Parameter Value

Gradient Threshold Method L2 norm

Gradient Threshold 1

Maximum Epochs 7000

Mini Batch Size 1

Input and Label Shuffle every epoch

There are two types of RMSEs investigated to evaluate the network performance in
this study:

1. Resubstitution RMSE is computed by evaluating the root mean square error between
the training labels and outputs predicted with the training data using the network
trained using the labels and the training dataset [33–35]. In other words, how accu-
rately the network can predict the labels of the training dataset.

2. Cross-validation RMSE or K-fold cross-validation; the network performance is evalu-
ated using validation K-fold of 5 by separating the training and validation dataset into
five sub-datasets. Note that the members of each sub-datasets were chosen at random
and then trained five separate networks using each sub-dataset. The cross-validation
RMSE was then computed as the average RMSE error of the five networks.

The main difference between the two RMSEs is that the resubstitution RMSE provides
an overall performance, whereas the cross-validation RMSE can provide an insight into
how the noises and discrepancies in the dataset affect the trained network performance.
Here, the two RMSEs will be quantified and discussed.

3. Results
3.1. Network Training

Figure 5 shows the RMSE for each training epoch and the loss in mmHg. The training
dataset was further separated into 95% and 5% for training and validation. The training
response is displayed in the blue curve for the RMSE, and the validation RMSE is shown
in the black curve, as shown in Figure 5a. The training was carried to 7000 epochs taking
around 26 h under the single GPU environment, as described in detail in the materials and
methods section. Figure 5b shows the loss from the training for the same range of epochs.
After the training, the network was slightly overfitting by 4.5 mmHg when comparing the
training curve to the validation curve, and the training has converged to its stable response.
The network was designed to cope with the overfitting issue by adding multiple stages
of batch normalization layers, as shown in Table 2. It will be shown in the next section
that the slight overfitting of 4.5 mmHg is well within the RMSE of resubstitution error
and the cross-validation error. Therefore, further network architecture modification was
unnecessary since the predicted response was already within the error limit.

The loss reported in Figure 5b was computed using the function using half mean
square error expressed in Equation (1).

loss =
1
2

L

∑
p=1

(
tp − yp

)2 (1)

where loss is the half mean square loss function, and L is the output sequence length
corresponding to 250 data points. The terms tp and yp are the training labels and the
predicted responses at the pth pixel of the output sequence.
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Figure 5. Shows the network training and validation for different iterations ranging from 0 to
82,500 epochs (a) RMSE in mmHg, and (b) loss; training RMSE is the blue curve, training loss is the
red curve, and validation curves are shown in black.

3.2. Blood Pressure Prediction of the Trained Sequences

The CAN network was trained using the data shown in Figure 6a, as explained in the
earlier section. The trained network was then employed to predict the time-domain data
of all the training data to calculate the resubstitution loss. The predicted responses from
the network are shown in Figure 6b; meanwhile, Figure 6c shows the resubstitution error
calculated by subtracting the time-domain B.P. signals in Figure 6a,b. The corresponding
resubstitution RMSE was 4.27 mmHg, similar to the RMSE of the validation. Although
the overall shape of the resubstitution B.P. signal agreed well with the training dataset,
the fluctuation of the time domain data had a higher range, as shown in the histogram in
Figure 7b compared to the distribution of the training dataset shown in Figure 7a.

The predicted responses in Figure 6a,b can be further analyzed by calculating the
average maximum B.P., the average minimum B.P, the average mean B.P., and the standard
deviation, as discussed in the materials and methods section. Figure 8 shows the average
maximum B.P., the average minimum B.P, the average mean B.P., and the standard deviation
calculated for the 700 frames of the training dataset and predicted response. The frames’
trends between the training dataset and the predicted response agreed well. The RMSE
values between the training and the resubstitution response were 4.9590, 5.0880, 1.9776,
and 2.4064 mmHg for the average maximum B.P., the average minimum B.P, the average
mean B.P., and the standard deviation, respectively. The RMSE values for the systolic and
the diastolic blood pressures were around 5 mmHg, with a slight error for the overall
mean value within 2 mmHg. In the case of standard deviation RMSE, 2.4064 mmHg
indicates that the predicted B.P. levels using the trained CAN network did not deviate
from the training data much. For the K-fold cross-validation, the RMSE values were 6.8750,
7.0772, 2.0125, and 2.6211 mmHg for the average maximum B.P., the average minimum
B.P, the average mean B.P., and the standard deviation, respectively. It can be seen that
the discrepancies between the two types of RMSE are well within 2 mmHg, indicating
the proposed preprocessing method has enabled the trained network to be more robust to
temporal amplitude fluctuations. It will be discussed later that if the network is trained
without the preprocessing method, its performance will be worse and heavily affected by
amplitude fluctuations.
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Figure 9 shows some examples of 250 datapoint frames covering the blood pressure
of healthy individuals of 108/55 mmHg and 125/60 mmHg, as shown in Figure 9a,b,
hypotension case at the B.P. level of 79/58 mmHg, shown in Figure 9c, and a hypertension
B.P. level of 150/67 mmHg, shown in Figure 9d. It can be seen that the predicted values
agree well with the training data. The predicted signals were highly accurate for the
healthy and hypotensive blood pressure ranges. However, the hypertensive blood pressure
estimation has resulted in a moderate resubstitution loss. The trained network was then
applied to predict the untrained test dataset to see how well the network could perform in
the next section.
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Figure 9. Shows the blood pressure predicted by the trained neural network (red curves) compared
to the actual blood pressure signal (blue curves) across four ranges: (a) 108/55 mmHg (healthy);
(b) 125/60 mmHg (healthy); (c) 79/58 mmHg (hypotension); and (d) 150/67 mmHg (hypertension).

3.3. Blood Pressure Prediction of the Test Dataset

The blood pressure levels in the test dataset consisted of 28,000 data points which
contain the same level of blood pressure as the training sequence from 40 to 180 mmHg, as
shown in Figure 10a and depicted in the histogram shown in Figure 11b. Therefore, the
predicted sequence is shown in Figure 10b and depicted as the histogram in Figure 11c,
while the regression error is shown in Figure 10c. Figure 10c corresponds to the overall
RMSE of 7.73 mmHg. The predicted response can also be further analyzed by analyzing
individual frames of the 250 datapoint window to determine what was causing the discrep-
ancies. Figure 11a shows the average maximum B.P., the average minimum B.P, the average
mean B.P. and the standard deviation for the label of the test dataset and the predicted
responses using the trained network. The healthy blood pressure signal had the most accu-
rate prediction for both systolic and diastolic values, while the hypotension and extreme
hypertension cases signal yielded a high degree of error, as shown in Figure 11a. There
was no trend difference between the label and predicted blood pressure, but the predicted
B.P. fluctuated more than the label. The RMSE values were then calculated comparing the
label to the predicted values and yielded 7.1455, 6.0862, 4.2381, and 2.3218 mmHg for sys-
tolic, diastolic, mean, and standard deviation of blood pressure, respectively. Therefore, it
shows that the average maximum or systolic blood pressure gives the highest error, around
7 mmHg, compared to the diastolic and mean blood pressure data. The small standard
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deviation RMSE, 2.3218 mmHg, indicated that the overall performance was acceptable, and
the predicted blood pressure did not deviate much. Comparing the four types of RMSE
calculated from the training blood pressure dataset and the testing blood pressure dataset,
the systolic, diastolic, and the mean RMSE of the test dataset is higher than the training
dataset around 1–3 mmHg. The standard deviation RMSE of both cases was similar.
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Figure 11. Shows the (a) average max, min, mean, and standard deviation of each frame number for
the test dataset and predicted responses; (b) histogram of blood pressure level covering in the actual
testing blood pressure data; and (c) histogram of blood pressure level covering in the predicted blood
pressure data.

For the K-fold cross-validation, the RMSE values were 9.1287, 8.0812, 4.3522, and
2.4317 mmHg for the average maximum B.P., the average minimum B.P, the average mean
B.P., and the standard deviation, respectively. The K-fold RMSEs were slightly more
than the RMSEs reported for the test dataset; they were well within 2 mmHg, as in the
training dataset. The proposed preprocessing method can provide a robust network to
signal amplitude noises. Section 3.3 will demonstrate that networks trained without the
preprocessing method have a worse performance for the test dataset.

Figure 12 shows some examples of 250 datapoint frames covering the blood pressure
of healthy individuals of 95/51 mmHg and 110/62 mmHg, as shown in Figure 12a,b,
hypotension case at the B.P. level of 78/53 mmHg, shown in Figure 12c, and a hypertension
B.P. level of 179/70 mmHg, shown in Figure 12d. The test dataset predictions were only
accurate in a healthy range, while the hypotension and hypertension cases had slightly
higher discrepancies, as shown in Figure 12a–d for the healthy cases and Figure 12c–d for
the hypotension and hypertension cases, respectively. Although the maximum discrepancy
was around 7 mmHg, the CAN network can still provide an overall correct response; this
can open up another approach to continuously monitor the time-domain blood pressure
signal, with the response slightly worse than home-use digital blood pressure devices
in the market. Shahbabu et al. [36] reported that the absolute error between the digital
sphygmomanometer and the mercury-based sphygmomanometer was 5 mmHg.
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Figure 12. Shows the blood pressure predicted by the trained neural network (red curves) compared to
the untrained actual blood pressure signal (blue curves) across four ranges: (a) 95/51 mmHg (healthy);
(b) 110/62 mmHg (healthy); (c) 78/53 mmHg (hypotension); and (d) 179/70 mmHg (hypertension).

3.4. Performance Comparison to Networks Trained without the Proposed Preprocessing Method

This section demonstrates that the proposed preprocessing method can enhance the
network’s robustness to the amplitude noise signal. Here, a long short-term memory
(LSTM) network with the network architecture is summarized in Table 4. The LSTM
network is well-known for time series analysis. The LSTM employed in this study consisted
of 2 input channels for the time-domain ECG and PPG signals 2 × 175,000 data points and
1 response (output) channel 1 × 175,000 data points for the time-domain arterial blood
pressure. The network was trained using the same dataset as the CAN network with
a 0.005 learning rate for 7000 epochs of training iteration using MATLAB2021c and the
GPU NVIDIA GeForce GTX 1070. Note that here the training required slightly different
hyperparameters than the CAN training due to the memory limitation of the GPU, as
shown in Table 5.

The same training dataset trained the LSTM network as the CAN network explained in
the previous section. Figure 13 shows that the predicted blood pressure of the trained data
is highly accurate compared to the labels. The RMSEs calculated by comparing the labels
to the predicted blood pressures, as depicted in Figure 13a, were 0.6804, 0.8556, 0.3992,
and 0.1348 mmHg for systolic, diastolic, mean, and standard deviation, respectively. In
addition, the histogram of the labels shown in Figure 13b and the predicted blood pressures
shown in Figure 13c agree well with each other, indicating the LSTM network had a decent
resubstitution prediction performance.

Table 4. Details of the implemented Long Short-Term Memory network.

Layer Activations Learnable Variable Descriptions

Sequence input 2 – Sequence input with
2 dimensions

LSTM 400
InputWeights 1600 × 2,

RecurrentWeights 1600 × 400,
Bias 1600 × 1

LSTM with 400 hidden units

Fully Connected 1 Weights 1 × 400, Bias 1 × 1 1 fully connected layer

Regression Output 1 – Mean-squared-error
with response
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Table 5. Details of the hyperparameters used in the Long Short-Term Memory network.

Hyperparameter Parameter Value

Initial Learn Rate 5 × 10−3

Gradient Decay Factor 0.9000

Squared Gradient Decay Factor 0.9990

Epsilon (ε) 1 × 10−8

Learn Rate Schedule piecewise

Learn Rate Drop Factor 0.0100

Learn Rate Drop Period 125,000

L2 Regularization 1 × 10−4

Gradient Threshold Method L2 norm

Gradient Threshold 1

Maximum Epochs 7000

Mini Batch Size 2

Input and Label Shuffle once
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Figure 13. Shows the (a) average max, min, mean, and standard deviation of each frame number
training dataset and predicted responses; (b) histogram of blood pressure level covering in the actual
training blood pressure data; and (c) histogram of blood pressure level covering in the predicted
blood pressure data by using LSTM network.

The test dataset for LSTM consisted of 28,000 data points used in the CAN network
prediction, as explained in Section 3.2. The test dataset predictions are shown in Figure 14a.
It contained the same blood pressure level as the training sequence ranging from 40 to
180 mmHg. In contrast to the resubstitution performance, the predicted blood pressure for
the test dataset had a significantly worse regression accuracy with the RMSEs of 9.5528,
5.3774, 7.2500, and 2.5795 mmHg for maximum, minimum, mean, and standard devia-
tion, indicating that the LSTM suffered from noise in the time-domain amplitude signals.
Figure 14b,c shows histograms of the test dataset and the predicted responses, respectively.
The histogram of the predicted responses noticeably differed from the test dataset.

Table 6 summarizes the RMSE results comparing the CAN network with the proposed
preprocessing method to the LSTM network without the preprocessing method. For the
resubstitution performance, the LSTM prediction was predominantly more accurate than
the CAN network for all RMSE calculations. For the LSTM resubstitution performance, all
RMSE values were less than 1 mmHg.
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Figure 14. Shows the (a) average max, min, mean, and standard deviation of each frame number for
test dataset and predicted responses; (b) histogram of blood pressure level covering in the actual
testing blood pressure data; and (c) histogram of blood pressure level covering in the predicted blood
pressure data by using LSTM network.

Table 6. The performance comparison between the CAN with the proposed preprocessing method
and the LSTM without the preprocessing method.

RMSEs for the Resubstitution Performance

RMSE CAN with the Preprocessing LSTM without the
Preprocessing

The average maximum B.P. 4.9590 mmHg 0.6804 mmHg
The average minimum B.P 5.0880 mmHg 0.8556 mmHg

The average mean B.P. 1.9776 mmHg 0.3992 mmHg
The standard deviation 2.4064 mmHg 0.1348 mmHg

RMSEs for the Test Dataset Responses

RMSE CAN with the Preprocessing LSTM without the
Preprocessing

The average maximum B.P. 7.1455 mmHg 9.5528 mmHg
The average minimum B.P 6.0862 mmHg 7.3774 mmHg

The average mean B.P. 4.2381 mmHg 7.2500 mmHg
The standard deviation 2.3218 mmHg 2.5795 mmHg

Nevertheless, the test dataset prediction performance of the CAN network was more
precise than the LSTM prediction. The performance of the LSTM drastically deteriorated
to the RMSE levels higher than the CAN responses, as shown in Table 6. The CAN with
the proposed preprocessing method can enhance the network robustness to noise and
amplitude fluctuations. The following section will show that the CAN network can predict
a continuous blood pressure signal from ECG and PPG data from other data sources and
discuss the CAN network’s performance, advantages and limitations compared to the
conventional methods, including PAT and PPT.

3.5. The CAN Network Prediction Compared to Other Methods

Here, another dataset recording EEG, PPG, systolic blood pressure, and diastolic
blood pressure reported by Wang et al. [26] was adopted to demonstrate the capability
and adaptability of other proposed method datasets compared to conventional methods
including conventional methods the PAT and PTT. Wang et al. [26] reported that accurately
estimating the systolic blood pressure and diastolic blood pressure depended on the mathe-
matical model and preprocessing methods. The standard deviation for the systolic blood
pressure reported by Wang et al. [26] was 7.736 mmHg to 8.793 mmHg, and 3.448 mmHg to
3.622 mmHg, for the systolic blood pressure and diastolic blood pressure, respectively. By
analyzing the example dataset in Wang et al. [26], the CAN network can predict the systolic
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blood pressure and diastolic blood pressure to the RMSE of 7.0252 mmHg and 5.217 mmHg
for systolic and diastolic blood pressures.

By comparing the mean and standard deviation error to the reviewed methods in
Table 1 and Wang et al. [26], the proposed signal preconditioning method can perform
within the range of the error reported by the others. For example, the highest systolic error
was 7.1455 mmHg, lower than the systolic error obtained by any PWV-BP models.

It is crucial to point out the advantage of the proposed method. Firstly, it is a deep
learning approach, which requires no model or known equations. Secondly, our proposed
method can predict the real-time blood pressure signal compared to the other methods
that only calculate the systolic and diastolic blood pressure values. The proposed method
can open up another approach for cuff-less blood pressure monitoring in real-time for a
smartwatch. However, the developed CAN network for blood pressure monitoring still has
limitations, especially the higher RMSE in the diastolic blood pressure estimation than the
systolic blood pressure. This is due to the limited access to the data for training. The pro-
posed method is not a good candidate for real-time monitoring using a smartwatch, since
it requires continuous signal processing and a GPU for the deep learning-based software.

The limitations, however, do not obscure the main objective and the key benefit of
the proposed preprocessing method that the proposed method can train the network to
be more robust to noise in amplitude signals. The feature is achieved by training the
network using randomized amplitude and frequency-domain signals instead of the time-
domain signal. The proposed method can be applied in applications that suffer from signal
amplitude noise, such as optical biosensors [28,37], biomechanics [38], including human
body movement and tracking, and energy transformation in engineering fields [39,40].

4. Conclusions

The studies have shown the mathematical relationship between ECG, PPG, and the
blood pressure signals, which can be utilized as an alternative way of a cuff-less mea-
surement of the systolic and diastolic blood pressure. Therefore, we proposed a signal
preconditioning method to prepare a dataset for deep learning training. The proposed
method consisted of the following steps: (1) acquiring the time-domain ECG, PPG, and ABP
signals at 125 Hz; (2) grouping the time-domain ECG and PPG signals into data blocks of
250 sampling points corresponding to 2 s intervals; (3) multiplying the 2 s window frames
with two randomized multiplication factors with their values ranging from 0 to 1 to ensure
that the data does not contain amplitude information, since the amplitude of ECG and PPG
can fluctuate widely due to several possible reasons, for example, electrode attachment,
the detector battery and source; (4) Fourier transforming the PPG and EEG frames in (3),
obtaining four input signals: the amplitude and the phase of PPG, and the amplitude
and the phase of EEG; (5) then, normalizing the four input signals using z-transform; and
finally, (6) training the CAN network using the four frequency domain signals and their
corresponding arterial blood pressure in the time-domain as the label. The network was
trained using 700 frames (175,000 data points) and tested using 112 frames of the untrained
dataset covering blood pressure from 80 mmHg to 180 mmHg. The trained network can
provide an accurate prediction compared to the test label with the RMSE values of 7.1455,
6.0862, 4.2381, and 2.3218 mmHg for systolic, diastolic, mean, and standard deviation of
blood pressure, respectively. The K-fold cross-validation using K-fold of 5 also shows a
similar trend of the RMSEs, indicating that the proposed method enables the network to
learn from the frequency distributions and is more to temporal noises in the time-domain
signals. The advantages of the proposed method include (1) it is a deep learning approach,
and of course, did not require a known mathematical model. (2) The performance and
accuracy are similar to the other cuff-less blood pressure monitor reported in the literature.
Moreover, (3) the proposed method can provide a continuous time-domain B.P. signal,
potentially providing a convenient means for continuous cuff-less blood pressure moni-
toring. The proposed method has also been tested for its prediction performance using
the dataset from the other source and found that the trained network can be employed to
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predict the continuous blood pressure of the outside dataset at the same range of RMSEs.
There are still some limitations, including the lower prediction accuracy for the diastolic
blood pressure than the systolic blood pressure. The proposed continuous blood pressure
monitoring is not applicable for a smartwatch due to the GPU requirement for software
and the continuous signal processing, which can quickly drain the battery. The proposed
preprocessing method can train deep learning using frequency-domain signals for more
robust noise amplitude fluctuations and enhance performance in applications that suffer
from temporal amplitude noise.
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